Tính Lipschitz Của Ánh Xạ Đa Trị Đa ĐiệnVai trò của giải tích đa trị trong vài thập niên gần đây đã được khẳng định thông qua việc công nhận các ứng dụng rộng rãi trong nhiều lĩnh vực như lý thuyết phương trình vi phân, phương trình đạo hàm riêng, bất đẳng thức biến phân và phương trình suy rộng, lý thuyết tối ưu, lý thuyết điều khiển, tối ưu đa mục tiêu, khoa học quản lý và toán kinh tế. Hiện nay, rất nhiều kết quả nghiên cứu về các lĩnh vực nói trên được viết bằng ngôn ngữ giải tích đa trị. Điều này cho thấy sức mạnh của công cụ mới này. Cùng sự phát triển của khoa học kĩ thuật mà nhu cầu nghiên cứu sâu các tính chất của một lớp các ánh xạ đa trị đặc biệt được đặt ra, chẳng hạn như ánh xạ đa trị đa diện. Robinson đã phát hiện ra một tính chất đặc biệt của lớp ánh xạ này, đó là tính Lipschitz địa phương trên. Điều đó đã tạo nền tảng và động lực cho nhiều nghiên cứu sau này về tính Lipschitz của ánh xạ đa trị đa diện và ứng dụng của nó trong nhiều bài toán, đặc biệt là bài toán bất đẳng thức biến phân affine. Luận Văn Thạc Sĩ Toán Học Chuyên Ngành Toán Giải Tích Người hướng dẫn khoa học : TS Trịnh Công Diệu Tác giả : Đặng Thị Thảo Số Trang : 53 Kiểu file : PDF Ngôn ngữ : Tiếng việt Đại Học Sư Phạm TP.HCM 2014 Link Download http://nitroflare.com/view/69922BBF57EB27F/https://drive.google.com/drive/folders/1yLBzZ1rSQoNjmWeJTM6cEZ3WGQHg04L1